Pervasive applications and services are increasingly based on the intelligent interpretation of data gathered via heterogeneous sensors dipped in the environment. Classical Machine Learning (ML) techniques often do not go beyond a basic classification, lacking a meaningful representation of the detected events. This paper introduces a early proposal for a semantic-enhanced machine learning analysis on data of sensors streams, performing better even on resource-constrained pervasive smart objects. The framework merges an ontology-driven characterization of statistical data distributions with non-standard matchmaking services, enabling a fine-grained event detection by treating the typical classification problem of ML as a resource discovery

A semantic-based approach for Machine Learning data analysis

LOSETO, Giuseppe;
2015

Abstract

Pervasive applications and services are increasingly based on the intelligent interpretation of data gathered via heterogeneous sensors dipped in the environment. Classical Machine Learning (ML) techniques often do not go beyond a basic classification, lacking a meaningful representation of the detected events. This paper introduces a early proposal for a semantic-enhanced machine learning analysis on data of sensors streams, performing better even on resource-constrained pervasive smart objects. The framework merges an ontology-driven characterization of statistical data distributions with non-standard matchmaking services, enabling a fine-grained event detection by treating the typical classification problem of ML as a resource discovery
978-1-4799-7935-6
Artificial intelligence
Semantics
Event detection
Heterogeneous sensors
Intelligent interpretation
Matchmaking services
Pervasive applications
Resource discovery
Smart objects
Statistical datas
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12572/7722
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact