Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
Università LUM Giuseppe Degennaro - sito della Ricerca Institutional Research Information System
The paper proposes a knowledge-based framework for mobile autonomous robots. It exploits data annotation for semantic-based context description. High-level event/situation detection and action decision are performed through a semantic matchmaking approach, supporting approximate matches and relevance-based ranking. The framework was fully implemented in a prototype built with off-the-shelf components, validated in a Search And Rescue (SAR) case study and evaluated in an early performance analysis, supporting the feasibility of the proposal. The work demonstrates novel analysis methods on data extracted by inexpensive sensors can yield useful results without requiring hefty computational resources.
Knowledge-based sensing/acting in mobile autonomous robots
The paper proposes a knowledge-based framework for mobile autonomous robots. It exploits data annotation for semantic-based context description. High-level event/situation detection and action decision are performed through a semantic matchmaking approach, supporting approximate matches and relevance-based ranking. The framework was fully implemented in a prototype built with off-the-shelf components, validated in a Search And Rescue (SAR) case study and evaluated in an early performance analysis, supporting the feasibility of the proposal. The work demonstrates novel analysis methods on data extracted by inexpensive sensors can yield useful results without requiring hefty computational resources.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12572/7891
Citazioni
ND
social impact
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2021-2023 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.