Advanced age is characterized by several changes, one of which is the impairment of the homeostasis of intestinal microbiota. These alterations critically influence host health and have been associated with morbidity and mortality in older adults. "Inflammaging," an age-related chronic inflammatory process, is a common trait of several conditions, including sarcopenia. Interestingly, imbalanced intestinal microbial community has been suggested to contribute to inflammaging. Changes in gut microbiota accompanying sarcopenia may be attenuated by supplementation with pre- and probiotics. Although muscle aging has been increasingly recognized as a biomarker of aging, the pathophysiology of sarcopenia is to date only partially appreciated. Due to its development in the context of the age-related inflammatory milieu, several studies favor the hypothesis of a tight connection between sarcopenia and inflammaging. However, conclusive evidence describing the signaling pathways involved has not yet been produced. Here, we review the current knowledge of the changes in intestinal microbiota that occur in advanced age with a special emphasis on findings supporting the idea of a modulation of muscle physiology through alterations in gut microbial composition and activity.
Gut Dysbiosis and Muscle Aging: Searching for Novel Targets against Sarcopenia
Picca A;
2018-01-01
Abstract
Advanced age is characterized by several changes, one of which is the impairment of the homeostasis of intestinal microbiota. These alterations critically influence host health and have been associated with morbidity and mortality in older adults. "Inflammaging," an age-related chronic inflammatory process, is a common trait of several conditions, including sarcopenia. Interestingly, imbalanced intestinal microbial community has been suggested to contribute to inflammaging. Changes in gut microbiota accompanying sarcopenia may be attenuated by supplementation with pre- and probiotics. Although muscle aging has been increasingly recognized as a biomarker of aging, the pathophysiology of sarcopenia is to date only partially appreciated. Due to its development in the context of the age-related inflammatory milieu, several studies favor the hypothesis of a tight connection between sarcopenia and inflammaging. However, conclusive evidence describing the signaling pathways involved has not yet been produced. Here, we review the current knowledge of the changes in intestinal microbiota that occur in advanced age with a special emphasis on findings supporting the idea of a modulation of muscle physiology through alterations in gut microbial composition and activity.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.