: Calorie restriction (CR), defined as a reduction of the total calorie intake of 30% to 60% without malnutrition, is the only nutritional strategy that has been shown to extend lifespan, prevent or delay the onset of age-associated diseases, and delay the functional decline in a wide range of species. However, little is known about the effects of CR when started early in life. We sought to analyze the effects of CR in the skeletal muscle of young Wistar rats. For this, 3-month-old male and female rats were subjected to 40% CR or fed ad libitum for 3 months. Gastrocnemius muscles were used to extract RNA and total protein. Western blot and RT-qPCR were performed to evaluate the expression of key markers/pathways modulated by CR and affected by aging. CR decreased body and skeletal muscle weight in both sexes. No differences were found in most senescence, antioxidant, and nutrient sensing pathways analyzed. However, we found a sexual dimorphism in markers of oxidative stress, inflammation, apoptosis, and mitochondrial function in response to CR. Our data show that young female rats treated with CR exhibit similar expression patterns of key genes/pathways associated with healthy aging when compared to old animals treated with CR, while in male rats these effects are reduced. Additional studies are needed to understand how early or later life CR exerts positive effects on healthspan and lifespan.
Sex Specific Differences in Response to Calorie Restriction in Skeletal Muscle of Young Rats
Picca, Anna;
2022-01-01
Abstract
: Calorie restriction (CR), defined as a reduction of the total calorie intake of 30% to 60% without malnutrition, is the only nutritional strategy that has been shown to extend lifespan, prevent or delay the onset of age-associated diseases, and delay the functional decline in a wide range of species. However, little is known about the effects of CR when started early in life. We sought to analyze the effects of CR in the skeletal muscle of young Wistar rats. For this, 3-month-old male and female rats were subjected to 40% CR or fed ad libitum for 3 months. Gastrocnemius muscles were used to extract RNA and total protein. Western blot and RT-qPCR were performed to evaluate the expression of key markers/pathways modulated by CR and affected by aging. CR decreased body and skeletal muscle weight in both sexes. No differences were found in most senescence, antioxidant, and nutrient sensing pathways analyzed. However, we found a sexual dimorphism in markers of oxidative stress, inflammation, apoptosis, and mitochondrial function in response to CR. Our data show that young female rats treated with CR exhibit similar expression patterns of key genes/pathways associated with healthy aging when compared to old animals treated with CR, while in male rats these effects are reduced. Additional studies are needed to understand how early or later life CR exerts positive effects on healthspan and lifespan.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.