Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
Università LUM Giuseppe Degennaro - sito della Ricerca Institutional Research Information System
Aims: The aim of this study was to develop, validate, and illustrate an updated prediction model (SCORE2) to estimate 10-year fatal and non-fatal cardiovascular disease (CVD) risk in individuals without previous CVD or diabetes aged 40-69 years in Europe.
Methods and results: We derived risk prediction models using individual-participant data from 45 cohorts in 13 countries (677 684 individuals, 30 121 CVD events). We used sex-specific and competing risk-adjusted models, including age, smoking status, systolic blood pressure, and total- and HDL-cholesterol. We defined four risk regions in Europe according to country-specific CVD mortality, recalibrating models to each region using expected incidences and risk factor distributions. Region-specific incidence was estimated using CVD mortality and incidence data on 10 776 466 individuals. For external validation, we analysed data from 25 additional cohorts in 15 European countries (1 133 181 individuals, 43 492 CVD events). After applying the derived risk prediction models to external validation cohorts, C-indices ranged from 0.67 (0.65-0.68) to 0.81 (0.76-0.86). Predicted CVD risk varied several-fold across European regions. For example, the estimated 10-year CVD risk for a 50-year-old smoker, with a systolic blood pressure of 140 mmHg, total cholesterol of 5.5 mmol/L, and HDL-cholesterol of 1.3 mmol/L, ranged from 5.9% for men in low-risk countries to 14.0% for men in very high-risk countries, and from 4.2% for women in low-risk countries to 13.7% for women in very high-risk countries.
Conclusion: SCORE2-a new algorithm derived, calibrated, and validated to predict 10-year risk of first-onset CVD in European populations-enhances the identification of individuals at higher risk of developing CVD across Europe.
SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe
Hageman, Steven;Pennells, Lisa;Ojeda, Francisco;Kaptoge, Stephen;Kuulasmaa, Kari;de Vries, Tamar;Xu, Zhe;Kee, Frank;Chung, Ryan;Wood, Angela;McEvoy, John William;Veronesi, Giovanni;Bolton, Thomas;Achenbach, Stephan;Aleksandrova, Krasimira;Amiano, Pilar;Sebastian, Donostia-San;Amouyel, Philippe;Andersson, Jonas;Bakker, Stephan J L;Da Providencia Costa, Rui Bebiano;Beulens, Joline W J;Blaha, Michael;Bobak, Martin;Boer, Jolanda M A;Bonet, Catalina;Bonnet, Fabrice;Boutron-Ruault, Marie-Christine;Braaten, Tonje;Brenner, Hermann;Brunner, Fabian;Brunner, Eric J;Brunström, Mattias;Buring, Julie;Butterworth, Adam S;Capkova, Nadezda;Cesana, Giancarlo;Chrysohoou, Christina;Colorado-Yohar, Sandra;Cook, Nancy R;Cooper, Cyrus;Dahm, Christina C;Davidson, Karina;Dennison, Elaine;Di Castelnuovo, Augusto;Donfrancesco, Chiara;Dörr, Marcus;Doryńska, Agnieszka;Eliasson, Mats;Engström, Gunnar;Ferrari, Pietro;Ferrario, Marco;Ford, Ian;Fu, Michael;Gansevoort, Ron T;Giampaoli, Simona;Gillum, Richard F;Gómez de la Cámara, Agustin;Grassi, Guido;Hansson, Per-Olof;Huculeci, Radu;Hveem, Kristian;Iacoviello, Licia;Ikram, M Kamran;Jørgensen, Torben;Joseph, Bijoy;Jousilahti, Pekka;Wouter Jukema, J;Kaaks, Rudolf;Katzke, Verena;Kavousi, Maryam;Kiechl, Stefan;Klotsche, Jens;König, Wolfgang;Kronmal, Richard A;Kubinova, Ruzena;Kucharska-Newton, Anna;Läll, Kristi;Lehmann, Nils;Leistner, David;Linneberg, Allan;Pablos, David Lora;Lorenz, Thiess;Lu, Wentian;Luksiene, Dalia;Lyngbakken, Magnus;Magnussen, Christina;Malyutina, Sofia;Ibañez, Alejandro Marín;Masala, Giovanna;Mathiesen, Ellisiv B;Matsushita, Kuni;Meade, Tom W;Melander, Olle;Meyer, Haakon E;Moons, Karel G M;Moreno-Iribas, Conchi;Muller, David;Münzel, Thomas;Nikitin, Yury;Nordestgaard, Børge G;Omland, Torbjørn;Onland, Charlotte;Overvad, Kim;Packard, Chris;Pająk, Andrzej;Palmieri, Luigi;Panagiotakos, Demosthenes;Panico, Salvatore;Perez-Cornago, Aurora;Peters, Annette;Pietilä, Arto;Pikhart;Hynek;Psaty, Bruce M;Quarti-Trevano, Fosca;Garcia, J Ramón Quirós;Riboli, Elio;Ridker, Paul M;Rodriguez, Beatriz;Rodriguez-Barranco, Miguel;Rosengren, Annika;Roussel, Ronan;Sacerdote, Carlotta;Sans, Susana;Sattar, Naveed;Schiborn, Catarina;Schmidt, Börge;Schöttker, Ben;Schulze, Matthias;Schwartz, Joseph E;Selmer, Randi Marie;Shea, Steven;Shipley, Martin J;Sieri, Sabina;Söderberg, Stefan;Sofat, Reecha;Tamosiunas, Abdonas;Thorand, Barbara;Tillmann, Taavi;Tjønneland, Anne;Tong, Tammy Y N;Trichopoulou, Antonia;Tumino, Rosario;Tunstall-Pedoe, Hugh;Tybjaerg-Hansen, Anne;Tzoulaki, Joanna;van der Heijden, Amber;van der Schouw, Yvonne T;Verschuren, W M Monique;Völzke, Henry;Waldeyer, Christoph;Wareham, Nicholas J;Weiderpass, Elisabete;Weidinger, Franz;Wild, Philipp;Willeit, Johann;Willeit, Peter;Wilsgaard, Tom;Woodward, Mark;Zeller, Tanja;Zhang, Dudan;Zhou, Bin;Dendale, Paul;Ference, Brian A;Halle, Martin;Timmis, Adam;Vardas, Panos;Danesh, John;Graham, Ian;Salomaa, Veikko;Visseren, Frank;De Bacquer, Dirk;Blankenberg, Stefan;Dorresteijn, Jannick;Di Angelantonio, Emanuele
2021-01-01
Abstract
Aims: The aim of this study was to develop, validate, and illustrate an updated prediction model (SCORE2) to estimate 10-year fatal and non-fatal cardiovascular disease (CVD) risk in individuals without previous CVD or diabetes aged 40-69 years in Europe.
Methods and results: We derived risk prediction models using individual-participant data from 45 cohorts in 13 countries (677 684 individuals, 30 121 CVD events). We used sex-specific and competing risk-adjusted models, including age, smoking status, systolic blood pressure, and total- and HDL-cholesterol. We defined four risk regions in Europe according to country-specific CVD mortality, recalibrating models to each region using expected incidences and risk factor distributions. Region-specific incidence was estimated using CVD mortality and incidence data on 10 776 466 individuals. For external validation, we analysed data from 25 additional cohorts in 15 European countries (1 133 181 individuals, 43 492 CVD events). After applying the derived risk prediction models to external validation cohorts, C-indices ranged from 0.67 (0.65-0.68) to 0.81 (0.76-0.86). Predicted CVD risk varied several-fold across European regions. For example, the estimated 10-year CVD risk for a 50-year-old smoker, with a systolic blood pressure of 140 mmHg, total cholesterol of 5.5 mmol/L, and HDL-cholesterol of 1.3 mmol/L, ranged from 5.9% for men in low-risk countries to 14.0% for men in very high-risk countries, and from 4.2% for women in low-risk countries to 13.7% for women in very high-risk countries.
Conclusion: SCORE2-a new algorithm derived, calibrated, and validated to predict 10-year risk of first-onset CVD in European populations-enhances the identification of individuals at higher risk of developing CVD across Europe.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12572/16073
Citazioni
ND
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.