Modern chemotherapy achieves the shrinking of colorectal cancer liver metastases (CRLM) to such extent that they may disappear from radiological imaging. Disappearing CRLM rarely represents a complete pathological remission and have an important risk of recurrence. Augmented reality (AR) consists in the fusion of real-time patient images with a computer-generated 3D virtual patient model created from pre-operative medical imaging. The aim of this prospective pilot study is to investigate the potential of AR navigation as a tool to help locate and surgically resect missing CRLM. A 3D virtual anatomical model was created from thoracoabdominal CT-scans using customary software (VR RENDERA (R), IRCAD). The virtual model was superimposed to the operative field using an Exoscope (VITOMA (R), Karl Storz, Tuttlingen, Germany). Virtual and real images were manually registered in real-time using a video mixer, based on external anatomical landmarks with an estimated accuracy of 5 mm. This modality was tested in three patients, with four missing CRLM that had sizes from 12 to 24 mm, undergoing laparotomy after receiving pre-operative oxaliplatin-based chemotherapy. AR display and fine registration was performed within 6 min. AR helped detect all four missing CRLM, and guided their resection. In all cases the planned security margin of 1 cm was clear and resections were confirmed to be R0 by pathology. There was no postoperative major morbidity or mortality. No local recurrence occurred in the follow-up period of 6-22 months. This initial experience suggests that AR may be a helpful navigation tool for the resection of missing CRLM.

Augmented Reality Guidance for the Resection of Missing Colorectal Liver Metastases: An Initial Experience

Memeo R;
2016-01-01

Abstract

Modern chemotherapy achieves the shrinking of colorectal cancer liver metastases (CRLM) to such extent that they may disappear from radiological imaging. Disappearing CRLM rarely represents a complete pathological remission and have an important risk of recurrence. Augmented reality (AR) consists in the fusion of real-time patient images with a computer-generated 3D virtual patient model created from pre-operative medical imaging. The aim of this prospective pilot study is to investigate the potential of AR navigation as a tool to help locate and surgically resect missing CRLM. A 3D virtual anatomical model was created from thoracoabdominal CT-scans using customary software (VR RENDERA (R), IRCAD). The virtual model was superimposed to the operative field using an Exoscope (VITOMA (R), Karl Storz, Tuttlingen, Germany). Virtual and real images were manually registered in real-time using a video mixer, based on external anatomical landmarks with an estimated accuracy of 5 mm. This modality was tested in three patients, with four missing CRLM that had sizes from 12 to 24 mm, undergoing laparotomy after receiving pre-operative oxaliplatin-based chemotherapy. AR display and fine registration was performed within 6 min. AR helped detect all four missing CRLM, and guided their resection. In all cases the planned security margin of 1 cm was clear and resections were confirmed to be R0 by pathology. There was no postoperative major morbidity or mortality. No local recurrence occurred in the follow-up period of 6-22 months. This initial experience suggests that AR may be a helpful navigation tool for the resection of missing CRLM.
2016
RANDOMIZED CONTROLLED-TRIAL
COMPLETE RESPONSE
VIRTUAL-REALITY
INTRAOPERATIVE ULTRASOUND
CHEMOTHERAPY
SURGERY
CANCER
SIMULATION
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12572/16676
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact