In this paper, a case study is analyzed. This case study is about an upgrade of an industry communication system developed by following Frascati research guidelines. The knowledge Base (KB) of the industry is gained by means of different tools that are able to provide data and information having different formats and structures into an unique bus system connected to a Big Data. The initial part of the research is focused on the implementation of strategic tools, which can able to upgrade the KB. The second part of the proposed study is related to the implementation of innovative algorithms based on a KNIME (Konstanz Information Miner) Gradient Boosted Trees workflow processing data of the communication system which travel into an Enterprise Service Bus (ESB) infrastructure. The goal of the paper is to prove that all the new KB collected into a Cassandra big data system could be processed through the ESB by predictive algorithms solving possible conflicts between hardware and software. The conflicts are due to the integration of different database technologies and data structures. In order to check the outputs of the Gradient Boosted Trees algorithm an experimental dataset suitable for machine learning testing has been tested. The test has been performed on a prototype network system modeling a part of the whole communication system. The paper shows how to validate industrial research by following a complete design and development of a whole communication system network improving business intelligence (BI).
A Case Study of Innovation of an Information Communication system and Upgrade of the Knowledge Base in Industry by ESB, Artificial Intelligence, and Big Data System Integration
Massaro A;
2018-01-01
Abstract
In this paper, a case study is analyzed. This case study is about an upgrade of an industry communication system developed by following Frascati research guidelines. The knowledge Base (KB) of the industry is gained by means of different tools that are able to provide data and information having different formats and structures into an unique bus system connected to a Big Data. The initial part of the research is focused on the implementation of strategic tools, which can able to upgrade the KB. The second part of the proposed study is related to the implementation of innovative algorithms based on a KNIME (Konstanz Information Miner) Gradient Boosted Trees workflow processing data of the communication system which travel into an Enterprise Service Bus (ESB) infrastructure. The goal of the paper is to prove that all the new KB collected into a Cassandra big data system could be processed through the ESB by predictive algorithms solving possible conflicts between hardware and software. The conflicts are due to the integration of different database technologies and data structures. In order to check the outputs of the Gradient Boosted Trees algorithm an experimental dataset suitable for machine learning testing has been tested. The test has been performed on a prototype network system modeling a part of the whole communication system. The paper shows how to validate industrial research by following a complete design and development of a whole communication system network improving business intelligence (BI).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.