Aims/hypothesis: The role of the redox adaptor protein p66Shc as a potential mediator of saturated fatty acid (FA)-induced beta cell death was investigated. Methods: The effects of the FA palmitate on p66Shc expression were evaluated in human and murine islets and in rat insulin-secreting INS-1E cells. p66Shc expression was also measured in islets from mice fed a high-fat diet (HFD) and from human donors with different BMIs. Cell apoptosis was quantified by two independent assays. The role of p66Shc was investigated using pancreatic islets from p66Shcâ /â mice and in INS-1E cells with knockdown of p66Shc or overexpression of wild-type and phosphorylation-defective p66Shc. Production of reactive oxygen species (ROS) was evaluated by the dihydroethidium oxidation method. Results: Palmitate induced a selective increase in p66Shc protein expression and phosphorylation on Ser36 and augmented apoptosis in human and mouse islets and in INS-1E cells. Inhibiting the tumour suppressor protein p53 prevented both the palmitate-induced increase in p66Shc expression and beta cell apoptosis. Palmitate-induced apoptosis was abrogated in islets from p66Shcâ /â mice and following p66Shc knockdown in INS-1E cells; by contrast, overexpression of p66Shc, but not that of the phosphorylation-defective p66Shc mutant, enhanced palmitate-induced apoptosis. The pro-apoptotic effects of p66Shc were dependent upon its c-Jun N-terminal kinase-mediated phosphorylation on Ser36 and associated with generation of ROS. p66Shc protein expression and function were also elevated in islets from HFD-fed mice and from obese/overweight cadaveric human donors. Conclusions/interpretation: p53-dependent augmentation of p66Shc expression and function represents a key signalling response contributing to beta cell apoptosis under conditions of lipotoxicity.

The p66Shc redox adaptor protein is induced by saturated fatty acids and mediates lipotoxicity-induced apoptosis in pancreatic beta cells

PERRINI, SEBASTIO;
2015-01-01

Abstract

Aims/hypothesis: The role of the redox adaptor protein p66Shc as a potential mediator of saturated fatty acid (FA)-induced beta cell death was investigated. Methods: The effects of the FA palmitate on p66Shc expression were evaluated in human and murine islets and in rat insulin-secreting INS-1E cells. p66Shc expression was also measured in islets from mice fed a high-fat diet (HFD) and from human donors with different BMIs. Cell apoptosis was quantified by two independent assays. The role of p66Shc was investigated using pancreatic islets from p66Shcâ /â mice and in INS-1E cells with knockdown of p66Shc or overexpression of wild-type and phosphorylation-defective p66Shc. Production of reactive oxygen species (ROS) was evaluated by the dihydroethidium oxidation method. Results: Palmitate induced a selective increase in p66Shc protein expression and phosphorylation on Ser36 and augmented apoptosis in human and mouse islets and in INS-1E cells. Inhibiting the tumour suppressor protein p53 prevented both the palmitate-induced increase in p66Shc expression and beta cell apoptosis. Palmitate-induced apoptosis was abrogated in islets from p66Shcâ /â mice and following p66Shc knockdown in INS-1E cells; by contrast, overexpression of p66Shc, but not that of the phosphorylation-defective p66Shc mutant, enhanced palmitate-induced apoptosis. The pro-apoptotic effects of p66Shc were dependent upon its c-Jun N-terminal kinase-mediated phosphorylation on Ser36 and associated with generation of ROS. p66Shc protein expression and function were also elevated in islets from HFD-fed mice and from obese/overweight cadaveric human donors. Conclusions/interpretation: p53-dependent augmentation of p66Shc expression and function represents a key signalling response contributing to beta cell apoptosis under conditions of lipotoxicity.
2015
Apoptosis
Beta cell
Exendin-4
JNK
p53
p66Shc
Palmitic acid
Pancreatic islet
Adenoviridae
Aged
Animals
Body Mass Index
Diet
High-Fat
Fatty Acids
Female
Gene Expression Profiling
Humans
Insulin-Secreting Cells
Male
Mice
Mice
Inbred C57BL
Mice
Transgenic
Middle Aged
Oxidation-Reduction
Phosphorylation
RNA
Small Interfering
Rats
Reactive Oxygen Species
Shc Signaling Adaptor Proteins
Signal Transduction
Src Homology 2 Domain-Containing
Transforming Protein 1
Tumor Suppressor Protein p53
Apoptosis
Internal Medicine
Endocrinology
Diabetes and Metabolism
Medicine (all)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12572/26919
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact