We consider the triangular factorization of matrices in single-precision arithmetic and show how these factors can be used to obtain a backward stable solution. Our aim is to obtain double-precision accuracy even when the system is ill-conditioned. We examine the use of iterative refinement and show by example that it may not converge. We then show both theoretically and practically that the use of FGMRES will give us the result that we desire with fairly mild conditions on the matrix and the direct factorization. We perform extensive experiments on dense matrices using MATLAB and indicate how our work extends to sparse matrix factorization and solution.

Using FGMRES to obtain backward stability in mixed precision

Arioli m;
2009-01-01

Abstract

We consider the triangular factorization of matrices in single-precision arithmetic and show how these factors can be used to obtain a backward stable solution. Our aim is to obtain double-precision accuracy even when the system is ill-conditioned. We examine the use of iterative refinement and show by example that it may not converge. We then show both theoretically and practically that the use of FGMRES will give us the result that we desire with fairly mild conditions on the matrix and the direct factorization. We perform extensive experiments on dense matrices using MATLAB and indicate how our work extends to sparse matrix factorization and solution.
2009
FGMRES
mixed precision arithmetic
hybrid method,
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12572/6194
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact