We consider the model introduced in Paparella and von Hardenberg (2014), that consists in the homogeneous boundary value problem for a system of nonlinear degenerate parabolic equations. We prove the existence of global weak solutions and discuss their stability and asymptotic properties.

On a salt fingers model

Pellegrino, S. F.
2018

Abstract

We consider the model introduced in Paparella and von Hardenberg (2014), that consists in the homogeneous boundary value problem for a system of nonlinear degenerate parabolic equations. We prove the existence of global weak solutions and discuss their stability and asymptotic properties.
Degenerate parabolic equations
Existence
Neumann boundary conditions
Oceanography
Salt fingers
Water waves
Weak solutions
Analysis
Applied Mathematics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12572/6607
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact