Functional-Magnetic-Imaging (fMRI) is widely adopted to investigate neurophysiological correlates of emotion processing (EP). However, studies have reported that scanning procedures in neuroimaging protocols may increase or cause anxiety and psychological distress related with the scanning, thus inducing peripheral cortisol release. These phenomena may in turn impact on brain EP. Additionally, previous findings have indicated that inter-individual differences in stress-response intensity are mediated by levels of Emotional Stability (ES), a personality trait that has been associated with brain activity during EP, especially in amygdala and prefrontal cortex (PFC). The aim of this study was to investigate the interaction between indices of stress related to anticipation of fMRI scanning and levels of ES on amygdala and PFC activity during EP. With this aim, fifty-five healthy volunteers were characterized for trait ES. Furthermore, salivary cortisol levels at baseline and soon before fMRI scanning were measured as an index of stress related to scanning anticipation. During fMRI, participants performed an explicit EP task. We found that variation in salivary cortisol (Δc) interacts with ES on left amygdala and PFC activity during EP. More in details, in the context of a higher ES, the greater the Δc, the lower the activity in left amygdala and PFC. In the context of lower ES, the opposite Δc-brain activity relationship was found. Our results suggest that the stressful potential of fMRI interacts with personality traits in modulating brain activity during EP. These findings should be taken into account when interpreting neuroimaging studies especially exploring brain physiology during EP.

Emotional Stability Interacts with Cortisol Levels before fMRI on Brain Processing of Fearful Faces

Fazio, Leonardo;
2019-01-01

Abstract

Functional-Magnetic-Imaging (fMRI) is widely adopted to investigate neurophysiological correlates of emotion processing (EP). However, studies have reported that scanning procedures in neuroimaging protocols may increase or cause anxiety and psychological distress related with the scanning, thus inducing peripheral cortisol release. These phenomena may in turn impact on brain EP. Additionally, previous findings have indicated that inter-individual differences in stress-response intensity are mediated by levels of Emotional Stability (ES), a personality trait that has been associated with brain activity during EP, especially in amygdala and prefrontal cortex (PFC). The aim of this study was to investigate the interaction between indices of stress related to anticipation of fMRI scanning and levels of ES on amygdala and PFC activity during EP. With this aim, fifty-five healthy volunteers were characterized for trait ES. Furthermore, salivary cortisol levels at baseline and soon before fMRI scanning were measured as an index of stress related to scanning anticipation. During fMRI, participants performed an explicit EP task. We found that variation in salivary cortisol (Δc) interacts with ES on left amygdala and PFC activity during EP. More in details, in the context of a higher ES, the greater the Δc, the lower the activity in left amygdala and PFC. In the context of lower ES, the opposite Δc-brain activity relationship was found. Our results suggest that the stressful potential of fMRI interacts with personality traits in modulating brain activity during EP. These findings should be taken into account when interpreting neuroimaging studies especially exploring brain physiology during EP.
2019
Amygdala
Emotional Stability
Functional Magnetic Resonance Imaging
Prefrontal Cortex
Stress.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12572/7768
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact