DNAmethylation at CpG dinucleotides is associated with gene silencing, stress, and memory. The catechol-O-methyltransferase (COMT) Val158 allele in rs4680 is associated with differential enzyme activity, stress responsivity, and prefrontal activity during working memory (WM), and it creates a CpG dinucleotide. We report that methylation of the Val158 allele measured from peripheral blood mononuclear cells (PBMCs) of Val/Val humans is associated negatively with lifetime stress and positively withWMperformance; it interacts with stress to modulate prefrontal activity during WM, such that greater stress and lower methylation are related to reduced cortical efficiency; and it is inversely related to mRNA expression and protein levels, potentially explaining the in vivo effects. Finally, methylation of COMT in prefrontal cortex and that in PBMCs of rats are correlated. The relationship of methylation of the COMT Val158 allele with stress, gene expression,WMperformance, and related brain activity suggests that stress-related methylation is associated with silencing of the gene, which partially compensates the physiological role of the high-activity Val allele in prefrontal cognition and activity. Moreover, these results demonstrate how stress-related DNA methylation of specific functional alleles impacts directly on human brain physiology beyond sequence variation.

Stress-related methylation of the COMT Val158 allele predicts human prefrontal cognition and activity

FAZIO, LEONARDO;
2011-01-01

Abstract

DNAmethylation at CpG dinucleotides is associated with gene silencing, stress, and memory. The catechol-O-methyltransferase (COMT) Val158 allele in rs4680 is associated with differential enzyme activity, stress responsivity, and prefrontal activity during working memory (WM), and it creates a CpG dinucleotide. We report that methylation of the Val158 allele measured from peripheral blood mononuclear cells (PBMCs) of Val/Val humans is associated negatively with lifetime stress and positively withWMperformance; it interacts with stress to modulate prefrontal activity during WM, such that greater stress and lower methylation are related to reduced cortical efficiency; and it is inversely related to mRNA expression and protein levels, potentially explaining the in vivo effects. Finally, methylation of COMT in prefrontal cortex and that in PBMCs of rats are correlated. The relationship of methylation of the COMT Val158 allele with stress, gene expression,WMperformance, and related brain activity suggests that stress-related methylation is associated with silencing of the gene, which partially compensates the physiological role of the high-activity Val allele in prefrontal cognition and activity. Moreover, these results demonstrate how stress-related DNA methylation of specific functional alleles impacts directly on human brain physiology beyond sequence variation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12572/7849
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact