Bortezomib (bort) has improved overall survival in patients with multiple myeloma (MM), but the majority of them develop drug resistance. In this study, we demonstrate that bone marrow (BM) fibroblasts (cancer-associated fibroblasts; CAFs) from bort-resistant patients are insensitive to bort and protect the RPMI8226 and patients' plasma cells against bort-induced apoptosis. Bort triggers CAFs to produce high levels of interleukin (IL)-6, IL-8, insulin-like growth factor (IGF)-1 and transforming growth factor (TGF) β. Proteomic studies on CAFs demonstrate that bort resistance parallels activation of oxidative stress and pro-survival autophagy. Indeed, bort induces reactive oxygen species in bort-resistant CAFs and activates autophagy by increasing light chain 3 protein (LC3)-II and inhibiting p62 and phospho-mammalian target of rapamycin. The small-interfering RNA knockdown of Atg7, and treatment with 3-methyladenine, restores bort sensitivity in bort-resistant CAFs and produces cytotoxicity in plasma cells co-cultured with CAFs. In the syngeneic 5T33 MM model, bort-treatment induces the expansion of LC3-II(+) CAFs. TGFβ mediates bort-induced autophagy, and its blockade by LY2109761, a selective TβRI/II inhibitor, reduces the expression of p-Smad2/3 and LC3-II and induces apoptosis in bort-resistant CAFs. A combination of bort and LY2109761 synergistically induces apoptosis of RPMI8226 co-cultured with bort-resistant CAFs. These data define a key role for CAFs in bort resistance of plasma cells and provide the basis for a novel targeted therapeutic approach.

Halting prosurvival autophagy by TGFβ inhibition in bone marrow fibroblasts overcomes Bortezomid resistance in multiple myeloma patients

Annese, T.;
2015-01-01

Abstract

Bortezomib (bort) has improved overall survival in patients with multiple myeloma (MM), but the majority of them develop drug resistance. In this study, we demonstrate that bone marrow (BM) fibroblasts (cancer-associated fibroblasts; CAFs) from bort-resistant patients are insensitive to bort and protect the RPMI8226 and patients' plasma cells against bort-induced apoptosis. Bort triggers CAFs to produce high levels of interleukin (IL)-6, IL-8, insulin-like growth factor (IGF)-1 and transforming growth factor (TGF) β. Proteomic studies on CAFs demonstrate that bort resistance parallels activation of oxidative stress and pro-survival autophagy. Indeed, bort induces reactive oxygen species in bort-resistant CAFs and activates autophagy by increasing light chain 3 protein (LC3)-II and inhibiting p62 and phospho-mammalian target of rapamycin. The small-interfering RNA knockdown of Atg7, and treatment with 3-methyladenine, restores bort sensitivity in bort-resistant CAFs and produces cytotoxicity in plasma cells co-cultured with CAFs. In the syngeneic 5T33 MM model, bort-treatment induces the expansion of LC3-II(+) CAFs. TGFβ mediates bort-induced autophagy, and its blockade by LY2109761, a selective TβRI/II inhibitor, reduces the expression of p-Smad2/3 and LC3-II and induces apoptosis in bort-resistant CAFs. A combination of bort and LY2109761 synergistically induces apoptosis of RPMI8226 co-cultured with bort-resistant CAFs. These data define a key role for CAFs in bort resistance of plasma cells and provide the basis for a novel targeted therapeutic approach.
2015
Multiple myeloma
bortezomib
plasma cells
fibroblasts.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12572/7999
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact